Artificial Intelligence and NASA Data Used to Discover Eighth Planet Circling Distant Star

Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth.

The planet was discovered in data from NASA’s Kepler space telescope. The newly-discovered Kepler-90i — a sizzling hot, rocky planet that orbits its star once every 14.4 days — was found by researchers from Google and The University of Texas at Austin using machine learning.

Machine learning is an approach to artificial intelligence in which computers “learn.” In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded signals from planets beyond our solar system, known as exoplanets.

“Just as we expected, there are exciting discoveries lurking in our archived Kepler data, waiting for the right tool or technology to unearth them,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington.

“This finding shows that our data will be a treasure trove available to innovative researchers for years to come.” The discovery came about after researchers Christopher Shallue and Andrew Vanderburg trained a computer to learn how to identify exoplanets in the light readings recorded by Kepler – the minuscule change in brightness captured when a planet passed in front of, or transited, a star.

Inspired by the way neurons connect in the human brain, this artificial “neural network” sifted through Kepler data and found weak transit signals from a previously-missed eighth planet orbiting Kepler-90, in the constellation Draco. While machine learning has previously been used in searches of the Kepler database, this research demonstrates that neural networks are a promising tool in finding some of the weakest signals of distant worlds.

Other planetary systems probably hold more promise for life than Kepler-90. About 30 percent larger than Earth, Kepler-90i is so close to its star that its average surface temperature is believed to exceed 800 degrees Fahrenheit, on par with Mercury.

Its outermost planet, Kepler-90h, orbits at a similar distance to its star as Earth does to the Sun. “The Kepler-90 star system is like a mini version of our solar system. You have small planets inside and big planets outside, but everything is scrunched in much closer,” said Vanderburg, a NASA Sagan Postdoctoral Fellow and astronomer at the University of Texas at Austin. Shallue, a senior software engineer with Google’s research team Google AI, came up with the idea to apply a neural network to Kepler data.

He became interested in exoplanet discovery after learning that astronomy, like other branches of science, is rapidly being inundated with data as the technology for data collection from space advances. “In my spare time, I started googling for ‘finding exoplanets with large data sets’ and found out about the Kepler mission and the huge data set available,” said Shallue.

“Machine learning really shines in situations where there is so much data that humans can’t search it for themselves.” Kepler’s four-year dataset consists of 35,000 possible planetary signals. Automated tests, and sometimes human eyes, are used to verify the most promising signals in the data. However, the weakest signals often are missed using these methods. Shallue and Vanderburg thought there could be more interesting exoplanet discoveries faintly lurking in the data.

First, they trained the neural network to identify transiting exoplanets using a set of 15,000 previously-vetted signals from the Kepler exoplanet catalogue. In the test set, the neural network correctly identified true planets and false positives 96 percent of the time. Then, with the neural network having “learned” to detect the pattern of a transiting exoplanet, the researchers directed their model to search for weaker signals in 670 star systems that already had multiple known planets. Their assumption was that multiple-planet systems would be the best places to look for more exoplanets.

We got lots of false positives of planets, but also potentially more real planets,” said Vanderburg. “It’s like sifting through rocks to find jewels. If you have a finer sieve then you will catch more rocks but you might catch more jewels, as well.” Kepler-90i wasn’t the only jewel this neural network sifted out. In the Kepler-80 system, they found a sixth planet. This one, the Earth-sized Kepler-80g, and four of its neighboring planets form what is called a resonant chain – where planets are locked by their mutual gravity in a rhythmic orbital dance.

The result is an extremely stable system, similar to the seven planets in the TRAPPIST-1 system. Their research paper reporting these findings has been accepted for publication in The Astronomical Journal. Shallue and Vanderburg plan to apply their neural network to Kepler’s full set of more than 150,000 stars. Kepler has produced an unprecedented data set for exoplanet hunting.

After gazing at one patch of space for four years, the spacecraft now is operating on an extended mission and switches its field of view every 80 days. “These results demonstrate the enduring value of Kepler’s mission,” said Jessie Dotson, Kepler’s project scientist at NASA’s Ames Research Center in California’s Silicon Valley.

“New ways of looking at the data – such as this early-stage research to apply machine learning algorithms – promises to continue to yield significant advances in our understanding of planetary systems around other stars. I’m sure there are more firsts in the data waiting for people to find them.”

Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate in Washington. NASA’s Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. This work was performed through the Carl Sagan Postdoctoral Fellowship Program executed by the NASA Exoplanet Science Institute.

See on Augmented World

Digital Energy Report: il futuro dell’energia è digitalene

“Il futuro dell’energia è digitale e l’energia è il prossimo settore in cui la disruption digitale colpirà. L’energia digitale è il fattore abilitante l’ecosistema dei prodotti e servizi smart che caratterizzano le reti, i sistemi energetici e produttivi”. Con queste parole Vittorio Chiesa, direttore dell’Energy&Strategy Group della School of Management del Politecnico di Milano, ha presentato il Digital Energy Report.

Ma cosa si intende per Digital Energy? Quali sono i benefici che derivano dalla su adozione?
Digital Energy Report ha come obiettivo quello di analizzare le conoscenze e le competenze per comprendere la reale portata della digitalizzazione nell’ambito energetico nei diversi ambiti: Smart Energy & Grid, Smart Manufacturing e Smart Building.

Si sente ormai spesso parlare di Digital Energy indicando la possibilità di utilizzare le tecnologie digitali per il controllo dei consumi di energia. Ma in realtà è molto di più. L’uso delle tecnologie digitali coinvolge tutta la filiera dell’energia, dalla produzione alla vendita.
Parlare di digital energy significa parlare di architetture complesse che oltre ai sistemi per il monitoraggio e l’azionamento dei diversi impianti energetici includono i sistemi di trasmissione dei dati e l’intelligenza necessaria alla loro elaborazione.

“Le sfide della digital energy sono molte – spiega Vittorio Chiesa -, sia sul piano tecnologico, sia soprattutto sul piano dei modelli di business vincenti”.

I tre paradigmi della Digital Energy:

Smart Energy & Grid
– Rientrano in questo ambito le applicazioni implementabili sia nella generazione di fonti tradizionali, sia rinnovabili che consentono lo sviluppo di reti intelligenti in grado di sfruttare al meglio la produzione non programmata.
La scelta di soluzioni digitali è vincente, non soltanto per il gestore dell’impianto, ma anche per il sistema elettrico che guadagna in termini di affidabilità e flessibilità.

Smart Manufacturing
– Rientrano le applicazioni IT dedicate al mondo industriale per una gestione ottimizzata dei processi produttivi. In questo caso le tecnologie digitali garantiscono una produzione automatizzata e interconnessa.
Il Piano Industria 4.0 ha lo scopo di stimolare la trasformazione digitale delle imprese manifatturiere, rendendole competitive in un mercato in continua evoluzione. Le tecnologie abilitanti spaziano dalla raccolta dati, alla robotica, all’automazione avanzata.

Smart Building
– Rientrano le soluzioni digitali per la gestione automatica di impianti, come quelli per l’illuminazione e la climatizzazione, con particolare attenzione al monitoraggio in ottica di risparmio energetico e sicurezza delle persone. Il mondo digitale incontra quello dell’efficienza energetica: monitoraggio, controllo e regolazione che determinano il funzionamento ottimale degli impianti. Il flusso di energia, inoltre, genera un flusso di dati che apre a servizio come la manutenzione predittiva.
Le soluzioni digitali per lo Smart Building rappresentano un primo e importante passo di efficientamento di un parco edifici che come sappiamo è decisamente vecchio e con impianti obsoleti.

Le tecnologie per la Digital Energy
Gli apparati fisici che abilitano la trasformazione digitale sono prodotti interconnessi, intelligenti che offrono nuove funzionalità. Comunemente vengono chiamati IoT, Internet of Things. La vera innovazione non consiste nella connettività dell’oggetto, ma nella possibilità di interagire con altri oggetti o con l’uomo.

Le capacità dei prodotti interconnessi spaziano dal più semplice monitoraggio delle condizioni di funzionamento, con la segnalazione di eventuali anomalie, al controllo, dall’ottimizzazione, fino allo sviluppo di una certa autonomia del prodotto.
A fine 2015 sono stati stimati circa 18 miliardi di oggetti connessi e intelligenti e nel 2010 saranno 50 miliardi.

See on Augmented World

Google pulls the plug on Project Tango, pushes ARCore for augmented reality

This is certainly no surprise, but just the same, we can confirm that Google is officially ending its support for Project Tango and other Tango-related products. Instead, the mothership is going to move forward in the realm of augmented reality (AR) with its new ARCore platform. We wondered what would become of Tango in the long run when Google announced ARCore, and now that question is officially answered.

Google started dabbling in AR with Project Tango a couple of years back. But the efforts never really got the traction it needed with manufacturers since the platform was very specific on hardware. The furthest Project Tango got was being released in devices like the Lenovo Phab 2 Pro and the ASUS ZenFone AR. But because of the lack of support for the platform on multiple fronts, Google has come to its decision – it will end support for Tango by March 1, 2018.

In ARCore, however, Google has found an AR platform for phones that did not require very specific hardware. When ARCore was launched, it was akin to being able to bring AR for the masses – even lower tier devices. And so Google has opted to move forward in the realm of augmented reality with ARCore, as it has found more support from manufacturers and developers.

See on Augmented World